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ABSTRACT 
  
The aim of this study is to get some new perspectives for divergence of some 
harmonic o special series such as alternating series, p-series, random series, 
fourier series, time series, and so on…Many different proofs of the divergences of 
such series are considered and proved. Also, several numerical illustrations 
suported our results. 
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INTRODUCTION 
 
Analysis lectures are given especially in the first grades of 
the Faculty of Mathematics and Engineering of higher 
education. Their contents include both harmonic and 
nonharmonic series with their convergence or divergence.  
In generally, the first example in the topic is  given as 

“𝑆 =  
1

𝑛

∞

𝑛=1
” which is divergence but its general term is 

convergence. 
 
Definition 1.1. A series whose terms are in harmonic 

progression as in 𝑆 =  
1

𝑛

∞

𝑛=1
= 1 + 

1

2
+

1

3
+ ⋯+  

1

𝑛
+ ⋯ is 

called Harmonic Series.  
The harmonic series are those whose terms contain the 

harmonic sum and diverge to infinity. 
As it is known, Harmonic numbers have been at the 

center of attention of Mathematicians since the past. The 

series  
1

1
,

1

2
,

1

3
, ⋯ ,

1

𝑛
  known as Harmonic Numbers or 

Harmonic Sequences is also used in many fields of 
Mathematics and arts. Besides, it is obvious that an 
instrument's timbre is uniquely determined with its 
harmonic series. Harmonic series are significant and 
influential  in recognition whether or not are consonant. 

As we know, there are numerous types of techniques for 
proving theorems or mathematical problems. In this study, 
our aim is  to demonstrate the divergence of the Harmonic 
series using different methods and proofs. Comparisions of 
the different proofs in this study will be very significant and 
useful for readers and literature. 

There    are    many     different    types   of   methods   for 

 
 
convergence/divorgences of series. These methods play an 

important bounds  role for the 𝑆 = 
1

𝑛𝑎
 𝑎 ∈ 𝑧+ 

∞

𝑛=1
 series. 

Partial series of the sums 𝑆𝑛 = 1 +
1

2
+

1

3
+ ⋯+

1

𝑛
 converges to 

infinity very slowly, while 
1

𝑛
  converges to zero slowly. 

Assume that 𝑆 =  
1

𝑛

∞

𝑛=1
 does not converges to infinity. It 

means that we use proof by contraposition. If we 

take/consider 𝑛 = 1012, we get following result by 
computing computer programme: 
 

𝑆𝑛 = 𝑆1012 = 1 +
1

2
+ ⋯+

1

1012
 

 
This shows that  it is less than 30. In a similar way, ıf we get 

𝑛 = 1024, we find that 𝑆𝑛 converges to positive integer 
number  60.  

It has not been studied that the harmonic series may 
converge instead of divergence. Let's prove the divergence 
of this series with different evidence. 
 
 

MAIN THEOREMS AND RESULTS 
 

Divergence of the Harmonic Series 
 

Our theorems and results are given as follows with the 
concepts of previous section. 
 

Theorem 2.1. 𝑆 =  
1

𝑛

∞

𝑛=1
= 1 + 

1

2
+

1

3
+ ⋯+ 

1

𝑛
+ ⋯ is
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converges to infinity. 
 
We give several different types of proofs as follows: 
 
Proof 2.1. Let p be as follows: 
 
𝑝 = 1,2,3,⋯ ,𝑛  and 𝑝 < 𝑥 < 𝑝 + 1 
 
Then we have: 
 

1

𝑝 + 1
<

1

𝑥
<

1

𝑝
 

 
and 
 

 

 

 
 
We obtain n particle 1 in equations for 𝑝 = 1,2,3,⋯ ,𝑛. If we 
wrıte all of them as follows: 
 
1

2
< 𝑙𝑛 2 − 𝑙𝑛 1 < 1 

1

3
< 𝑙𝑛 3 − 𝑙𝑛 2 <

1

2
 

: 
1

𝑛 + 1
< 𝑙𝑛 𝑛 + 1 − ln𝑛 <

1

𝑛
 

 
then we get: 
  
1

2
+

1

3
+ ⋯+

1

𝑛+1
< 𝑙𝑛 𝑛 + 1 < 1 +

1

2
+ ⋯+⋯                                 2 

  
We also know that 𝑓 𝑥 = 𝑙𝑛 𝑥 + 1 ⇒ 𝑙𝑛 𝑥 + 1 < 𝑙𝑛 𝑥 + 1 is 
satisfied. Ifwe put this inequation in the 2, we have: 
 
𝑙𝑛 𝑛 + 1 <𝑆𝑛<𝑙𝑛 𝑛 + 1 
 
This proves that 𝑆𝑛 converges to infinity. Besides, it gives 
that the divergency of the speed is  𝑙𝑛 𝑛 .  
 

Proof 2.2. Let us suppose that 𝑆 = 1 +
1

2
+

1

3
+ ⋯+⋯be a real 

number. It is trivial that the set of real numbers is a field. 
So, we can write 𝑆 as the following: 
 

𝑆 = 1 +
1

2
+

1

3
+ ⋯ ⋅                                                                             1* 

𝑆 =  1 +
1

3
+

1

5
+ ⋯  +  

1

2
+

1

4
+

1

6
+ ⋯   

𝑆 =  1 +
1

3
+

1

5
+ ⋯  +

1

2
 1 +

1

2
+

1

3
…   

𝑆 =  1 +
1

3
+

1

5
…  +

1

2
⋅ 𝑆 

𝑆 −
1

2
𝑆 =  1 +

1

3
+ ⋯   

1

2
𝑆 =  1 +

1

3
+ ⋯  ………                                                                     2* 

 
If the both left part of 1* and right part of 1* is divided by 
2*, we have: 
 
𝑆

2
=

1

2
+

1

4
+

1

6
+ ⋯ < 1 +

1

3
+

1

5
… =

1

2
𝑆 

 
This is a contradiction. Therefore, 
 

𝑆 = 1 +
1

2
+

1

3
+ ⋯ 

 
is not finite sums. 
 

Proof 2.3. As it is known that the following equation holds: 
 

𝑙𝑛 2 = 1 −
1

2
+

1

3
−

1

4
+

1

5
−

1

6
… 

 
We can consider such as:  
 

𝑙𝑛 2 =  1 −
1

2
 +  

1

3
−

1

4
 +  

1

5
−

1

6
 + ⋯ 

=
1

2
+

1

12
+

1

30
+ ⋯ > 0…….                                                               1** 

 

Now, assuming that 𝑆 = 1 +
1

2
+

1

3
+ ⋯is convergent. In this 

case, we can rewrite 𝑙𝑛 2 by changing the ordering of the 
numbers. Hence, we have: 
 

𝑙𝑛 2 =  1 +
1

3
+

1

5
+ ⋯  −  

1

2
+

1

4
+

1

6
+ ⋯   

=  1 +
1

3
+

1

5
+ ⋯  −

1

2
 1 +

1

2
+

1

3
+ ⋯   

 
Using Proof 2.2,  we obtain: 
 

𝑙𝑛 2 =
1

2
𝐻 −

1

2
𝐻 =0 ……                                                               2** 

 

This is a contradiction and contradicts 1**. This indicates 

that 𝑆 = 1 +
1

2
+

1

3
+ ⋯is divergent.  

 

Proof 2.4. Supposing that 𝑆 = 1 +
1

2
+

1

3
+ ⋯+

1

𝑛
= 𝑎 ∈ ℝ. It 

indicates that this sum is convergent. If we write 𝑎 as 
follows: 
 

𝑎 =  1 +
1

2
 +  

1

3
+

1

4
 + ⋯ >  

1

2
+

1

2
 +  

1

4
+

1

4
 +  

1

6
+

1

6
 … > 𝑎. 

 
which is a contradiction. So,  S is not convergent but 
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divergent. 
 

Proof 2.5. For 𝑛 ∈ 𝑍+ and  𝑛 ≠ 1 , we can use  
2

𝑛
<

1

𝑛−1
+

1

𝑛+1
inequality. Then, we obtain: 

 
2

3
<

1

2
+

1

4
 

2

4
<

1

3
+

1

5
 

2

5
<

1

4
+

1

6
 

2

6
<

1

5
+

1

7
 

2

7
<

1

6
+

1

8
 

 
for𝑛 ∈ 𝑍+,𝑛 > 1.Using them, we have: 
 

2  
1

3
+

1

4
+

1

5
…  <

1

3
+

1

4
+ 2  

1

5
+

1

6
…   

2  
1

3
+

1

5
 <

1

3
+

1

4
 

 
It is trival that this is a contradiction since 2a<a. Hence, S is 
divergent. 
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